太阳能光伏
HOME
太阳能光伏
正文内容
光通讯原理微盘 本领非凡的“光学回音壁”
发布时间 : 2025-05-07
作者 : 小编
访问数量 : 23
扫码分享至微信

本领非凡的“光学回音壁”

光波在光学回音壁中传输示意图。

●它择频而聚,是光子家族的“栖息地”

●它性能优越,感知与探测能力超群

●它应用广泛,是军事领域的“潜力股”

提起回音壁,许多人都会想到北京天坛公园内的一处著名景点:那道直径61.5米的圆形围墙,就是声名远播的天坛回音壁。如果你置身于围墙下,轻声地说上几句话,站在围墙另一端的人就能清晰地听到。这一奇妙现象,在声学中的原理其实很简单,即反射。由于圆形墙面弧度合理且表面光滑,声波沿墙面多次反射之后,就会形成类似于“圆的内接多边形”的路径,近乎无损耗地抵达围墙另一端。

光的传播与声音的传播也很类似。在光学领域,就有一种基于回音壁结构的器件——光学回音壁。其原理与天坛回音壁传声非常类似,但实现起来并没有那么简单,实用价值更是不可估量。

今年3月下旬,2019年度“中国光学十大进展”评选结果揭晓,就有一种与光学回音壁相关的基础研究成果入选,引起光学界的关注。

激光器上的重要器件

光学回音壁的学名叫光环谐振腔,它通过将光波限制在腔体内来回反射,使光子几乎无损耗地沿环路持续传播,从而实现光子的选择和增强,在特定条件下还能实现激光输出。这是光学回音壁拥有的“特殊本领”,因此,它是各类激光器不可或缺的重要组成部分。

那么,光学回音壁是如何产生激光的呢?这要从它的特殊结构说起。通常情况下,光学回音壁腔体由两块与轴线垂直的平面或是球面反射镜构成,光子在腔体内来回反射时,一些体力不支的光子,或是不守交通规则的光子,在中途掉队或是逃逸了,就会不由自主地被“甩”出腔体;只有“体力强、守规矩”的光子继续沿轴线运动,经过多个周期的反射往返后聚在一起。在这一过程中,光学回音壁好比一个筛子,在光子来回反射过程中,对光子进行筛选,选择出特定频率光子,实现“物以类聚”,可谓“不是一家人,不进一家门”。

不同的谐振腔可以实现不同频率的选择,这主要取决于谐振腔腔长、腔镜反射率及组合方式等因素。实现“物以类聚”后的光子,在腔体内进行“繁殖”,即同一家族的光子与被激活的粒子相遇,发生受激辐射而实现能量的放大。最终在腔内形成了传播方向一致、频率和相位相同的强光束,即激光。因此,光学回音壁堪称光子家族的完美“栖息地”。

光学回音壁原理并不复杂,早在上世纪初,科学家就发现了它的存在。但研制真正实用的器件,则是上世纪末的事了。此后,随着现代科技的发展,光学回音壁已从单一的微球腔发展到微环腔、微泡腔、微盘腔等多种模式,并逐渐由实验室走进日常生产生活。

优异特性堪称完美

在光学领域,激光堪称“神奇之光”,被誉为“最亮的光、最快的刀、最准的尺”。作为研制各类激光器不可或缺的重要器件,光学回音壁凭借优异的特性脱颖而出,被称为光学领域“最完美的器件”。

——因子品质高,能量损耗低。能够获得高品质因子是描述谐振腔质量的一个重要参数。一般的谐振腔对光学镜片的质量、对准和组合方式等要求较高,获得更高品质的因子较为困难。光学回音壁则完全可以克服镜片对准难、组合难的问题,且光在腔内全反射时,几乎不会有光折射进入所接触的介质,所以损耗非常小。如果选择诸如晶体、液体等对光吸收小的材料,就更容易获得超高品质因子。谐振腔因子品质越高,腔损耗越低、寿命越长、精度越高。

——模式体积小,非线性效应强。模式体积是光学回音壁性能的一个重要参数。体积越小,光的能量越高,非线性效应就越强,利用谐振腔内的非线性光学效应,可以产生许多新奇的物理现象。比如利用二阶非线性效应,可在光学回音壁上实现光学倍频,使光波的频率增加一倍、波长减少一半。将红外光变成可见绿光,就是一种很典型的光学倍频。如果利用三阶非线性效应,则可以观察到光频梳现象,实现对光学频率极其精密的测量。光频梳如同梳头发的梳子一样,只不过它“梳”的不是头发而是光子,最后在频谱上得到一系列离散等间距的光谱,因此光频梳也被称为光尺。总之,利用光学回音壁中的非线性效应,可使原本单一的光子家族实现特定的“基因突变”,极大拓展其应用领域。

——制备容易,加工成本低。光学回音壁拥有一系列优越性能,而制备过程比一般的谐振腔更简单。最简单的光学回音壁,只需要熔融光纤制备即可得到,复杂一点的微环形谐振腔,也可以直接在硅衬底上利用现有的湿法刻蚀等一般制备工艺完成。制备简单,成本自然低廉。因此,它虽然诞生较晚,但犹如一颗冉冉升起的新星,在现代光学领域绽放出绚丽光彩。

军事应用的“潜力股”

光学回音壁的一系列优异特性,使得它在单原子分子检测、精密探测、激光发射等领域得到一系列应用,但它的应用潜力还有待于进一步挖掘。在国防和军事领域,它被视为一支后劲十足的“潜力股”。

——用于战场环境侦察。光学回音壁具有超强的感知和探测能力,对环境变化非常灵敏,即便是单纳米颗粒等级的极微小变化,都能实现近乎“万能”的感知和探测。而对环境温度、压力、压强、磁场等变化的感知和探测能力更是不在话下,可运用它对战场环境进行侦察、实时气象保障等,还可用来对极低浓度下有毒有害物质进行探测,为部队作战提供精细的实时战场环境监测保障,并对部队行动进行预警。

——助力军事智能化发展。光学回音壁成本低、体积小,对外界温度、压力等十分敏感,可利用这一传感特性研制集成光路元件,在实现武器装备小型化、智能化方面提供元器件支撑,实现对极端战场环境的测绘和传感。据报道,2018年,国外光学专家将光学回音壁、光电探测器、信号放大模块和光电处理模块、WIFI模块等封装成一个传感系统,实现了数据的无线读取和分析,并在航天领域成功应用。另外,集成化的光学回音壁能实现远程控制和无线传感,也有望在智能化的战场物联网系统中发挥作用。

——提高数据处理能力。目前,已有研究团队利用光学回音壁中的腔量子动力学理论,实现原子(或离子)与电磁场的相互作用,能够在芯片尺度上进行量子计算和光信息处理。量子计算能够突破摩尔定律,具有经典计算机不可比拟的优点,可极大提高计算机处理性能。在军事上,利用基于回音壁模式的光子芯片,有望提高数据处理能力。这将为军事通信、信息处理等信息化建设提供有力支撑。

室温超薄微盘中的间接带隙激光

  背景

  半导体激光器的不断小型化一直是一个科学的前沿。众所周知,集成电路的发展使得电子元器件可以到达数nm的尺寸;而与之相对应的有源光元器件则无法做到微电子级别的尺寸。作为有源光器件中的核心的半导体激光器的小型化则尤为受重视,因为小型化之后的半导体激光器可集成在光芯片上,对于光计算、通信和传感等应用至关重要。

  近日,来自韩国的高丽大学、庆熙大学、国立蔚山科学技术院的研究人员报告了在超薄WS2微盘中实现激光发射,并证明了50nm厚度的WS2微盘可以提供高效的光学增益和回音壁模式,足以实现室温下连续波(c.w.)激光的产生,该工作“Room-temperature continuous-wave indirect-bandgap transition lasing in an ultra-thin WS2 disk”发表在Nature子刊Nature Photonics上,为间接带隙材料应用于制作高效片上激光器提供了新的思路。

  WS2也就是二硫化钨,它的结构为三明治形状,是由S-W-S单元层堆垛而成的,其单元层由一层钨原子和上下两层硫原子层通过共价键连接而成,而层与层之间是以范德华力相结合。

  创新方案

  在这篇文章中,研究人员报告了在没有外部光腔结构存在的情况下,利用集成了WS2多层超薄层的微盘中间接带隙转移效应来实现激光发射的技术,并将激光器体积控制到与迄今为止报道的最小的半导体纳米激光器大小相当。由于WS2材料的高折射率(n≈4),一个超薄的WS2微盘(厚度约为50纳米)可以在其间接带隙的波长处(约880纳米)激发回音壁模式(WGMs)。由于WS2微盘同时提供了WGMs和光学增益,腔体的约束因子(增益体积与腔模式体积之比)高达约0.89,激光发射阈值大大降低。此外,多层WS2提供了一个高效的三能级粒子数反转系统,通过激子转变进行有效的载流子泵浦,令载流子快速地弛豫到间接带隙,使衰减时间变得缓慢,因此可以在超薄WS2微盘中观察到室温下连续波间接带隙激光。

  在传统的具有单层TMD的激光装置中,由于大多数TMD材料的增益是在可见光波长,腔体材料的选择和所制造的微腔结构的品质因子都受到严重限制。而使用具有高折射率的多层TMD作为无源纳米光子结构可以在超薄的厚度极限内(几十纳米)产生WGMs,器件的示意图如2a所示。图2d中WGM的横截面电场剖面显示了50纳米厚的WS2薄片中紧密束缚的光线。图2e显示了不同WGM模式数的电场轮廓。图2f,g显示了仿真得到的随着微盘直径和厚度的变化而变化的WGM光谱。当材料损失被忽略时,由于WGM的辐射损失导致的品质因子可超过400。

  图2:超薄的WS2盘作为WGM腔体。

  图3:用光泵浦下的WS2微盘。

  TPI 产品

图4:本工作中所用到的特励达普林斯顿仪器产品

  HRS300光谱仪(用到150g/mm以及1200g/mm光栅)以及PIXIS400BX相机

  本工作中的科研与研发人员在采集微型半导体激光发射光谱时使用了来自特励达普林斯顿仪器的HRS300高性能光谱仪以及PIXIS400BX科研级制冷CCD相机,该系统的高灵敏度保证了目前最小级别半导体激光器发射光谱的顺利采集。

相关问答

企业微信如何查看他人的微信号?-ZOL问答

2、若管理员已经开启“文件可分享到企业外”,可以在电脑端打开微盘—找到需要设置的文件—右击文件—权限管理—在其他人中开启“企业外通过链接可下载”,开启之...

有没有什么远程监管的办公软件?

企业微信企业微信是基于微信的通信能力,整合了企业内部通讯录和工作台,工作台当中包含日历、会议、文档、微盘等基本功能,在第三方应用平台,还可以找到考勤...

企业微信的文件在哪?-ZOL问答

企业微信看自己发的压缩文件被下载方法如下企业微信微盘确实有文件下载记录,但是只能由管理员在企业微信管理端查看,并且只能查看企业成员的打开/下载行为,不能...

企业微信有哪些特色的办公功能?

企业微信的效率工具:集成日程、会议、微文档、微盘、企业邮箱等效率工具,为企业打造更高效的通讯与办公工具。日程01.管理工作安排在日程中统一管理自己...

企业微信的好处和坏处-ZOL问答

4、微盘:统一存储的企业共享空间,文件修改实时同步,方便员工随时访问。管理端支持成员操作审计,安全管理企业数据。5、打卡:在手机或智慧考勤机上轻松打卡...

什么视频播放器可以下载电视剧和电影,苹果手机-ZOL问答

可以在百度云盘或是微盘上找找看直接下载(搜视频的时候再名字后面加一个百度云...可以用,535hk-..-.COM.有两种主要的方式来实现进程间的通信。一种可...

手机企业微信下载的文件在哪-ZOL问答

进入微盘后,点击我的文件,即可找到自己下载的文件。企业微信看自己发的压缩文件被下载方法如下企业微信微盘确实有文件下载记录,但是只能由管理员在企业微信管...

企业微信加密文件肿么保存-ZOL问答

用公司管理员账户开启文件保密,上传到微盘,再进行权限管理,设置成没密码压缩成zip文件即可保存。企业微信是腾讯微信团队打造的企业通讯与办公工具,具有与微信...

疫情当前,很多公司开启在家办公的模式,如何才能更高效的在家办公呢?

由于疫情的到来,让远程协作办公模式突然开启。那远程协助办公需要注意什么呢?有什么好的工具可以提升我们远程协助办公的效率吗?效率虽然这次各大小企业都集...

搭建平台价格是多少,知道的介绍下呗?

[回答]秦粮王贸易有限责任企业自2005年起,带领着一支精湛强干的技术团队,致力于品牌的打造。十年来,企业主要从事网站与APP开发、微盘交易系统研发、网站...

 台湾贾永婕  美丽的回忆 
王经理: 180-0000-0000(微信同号)
10086@qq.com
北京海淀区西三旗街道国际大厦08A座
©2025  上海羊羽卓进出口贸易有限公司  版权所有.All Rights Reserved.  |  程序由Z-BlogPHP强力驱动
网站首页
电话咨询
微信号

QQ

在线咨询真诚为您提供专业解答服务

热线

188-0000-0000
专属服务热线

微信

二维码扫一扫微信交流
顶部